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In two previous papers [1, 2], a technique for the indication of strength of coupling
between SEA subsystems was proposed. However, an apparent limitation to the use of the
coupling strength indicator C

S
was revealed by computational simulation. Whereas a value

for C
S
greater than 0)07 clearly indicates weak coupling, a smaller value only con"rms strong

coupling between subsystems when the uncoupled resonance frequencies of each subsystem
are su$ciently proximate. In order to overcome this major di$culty in the interpretation of
small values for C

S
, an indicator of modal interaction M

p
is proposed. In the case of weak

coupling, modal interaction is directly related to the proximity between uncoupled
resonance frequencies. The de"nition of M

p
relies upon both a deterministic analysis of the

coupling between two oscillators and a statistical model of interaction between uncoupled
resonant modes. M

p
can be assessed on assembled structures and improves the reliability of

C
S

as an indicator of strength of coupling between SEA subsystems.
( 2000 Academic Press
1. INTRODUCTION

An indicator of strength of coupling in a SEA sense, denoted by C
S
, has been proposed in

references [1, 2]. Two subsystems should be considered as weakly coupled in a SEA sense
only when values obtained for C

S
are greater than 0)07. This indicator appears to be

&&user-friendly'' and provides the experimenter with a rapid assessment of strength of
coupling between assumed statistical energy analysis subsystems of an assembled structure
within a frequency band. However, although they are not apparent from the experimental
results presented in reference [2], some restrictions on the practical usefulness of C

S
have

been suggested by theoretical studies presented in reference [1]. C
S

appears to be very
sensitive to the frequency separation between the modal frequencies of each uncoupled
subsystem and can yield values less than 0)07 even in the case of weak coupling. In fact, this
occurs when there is no interaction between modes localized on each subsystems [3]. Modal
interaction is then de"ned as a state where the modal frequencies of each subsystem are
su$ciently proximate within a frequency band to produce values of C

S
greater than 0)07 in

all cases of weak coupling. The reliability of C
S

as an indicator of strength of coupling in
a SEA sense depends highly on this modal interaction. If C

S
is less than 0)07, then either the
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two subsystems are weakly coupled, but without modal interaction, or they are strongly
coupled. If C

S
is greater than 0)07, then the two subsystems considered are weakly coupled

in a SEA sense. It is only when C
S

is less than 0)07 that its reliability is questioned. The
experimenter has to decide if the assumed SEA subsystems are weakly coupled, but with no
modal interaction, or if they are, in fact, strongly coupled. This work aims at providing the
experimenter with an indicator of modal interaction.

First, the de"nition of C
S

is brie#y presented and one example of its sensitivity to
frequency separation is provided. Then, for two coupled oscillators, the sensitivity of C

S
to

the relative location of their two resonance frequencies is studied by means of numerical
tests for a wide range of strength of coupling. In the case of very weak coupling, C

S
is derived

as a function both of natural frequencies and their modal dampings. Finally, based upon all
these results, an indicator of probability of modal interaction is proposed. It is denoted by
M

p
and can be used on any subsystem provided its modal density and internal loss factor

are known. M
p

forms a basis for distinguishing between (i) weak coupling without modal
interaction and (ii) strong coupling.

It should be noticed that the M
p

de"nition relies upon studies of one-dimensional
systems. Although it is very sensitive to resonance frequency matching, M

p
does not take

into account matching in the space domain between mode shapes. The problem of mode
shape matching poses a limitation to M

p
, the signi"cance of which requires further

investigation.

2. A BRIEF DESCRIPTION OF C
S

In references [1, 2] an indicator related to Langley's de"nition of weak coupling in a SEA
sense [4] has been developed in the time domain. This indicator is based on the time delays
to the peaks of the envelope of the band-pass-"ltered local kinetic energies in the subsystems
when one subsystem is subjected to a force impulse. It appears that the shape of the
temporal moving average (or envelope) of the band-pass-"ltered kinetic energy of the
indirectly excited subsystem can be related to the strength of coupling. In the case of weak
coupling, there is an appreciable time delay to the peak of the band-pass-"ltered kinetic
energy of the indirectly excited subsystem, as shown by the case of two spring-coupled rods
carrying longitudinal waves (Figure 1).
Figure 1. Temporal evolution of the kinetic energy of two weakly coupled rods when subject to an impulse
force.
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When the strength of coupling is increased, the response of the indirectly excited rod
tends towards the response of the directly excited rod. The particular patterns of these
responses to impulse excitation lead to the proposal of a general, non-dimensional indicator
of the coupling strength in an SEA sense based upon the temporal moving average of kinetic
energy (Figure 2). The indicator of coupling strength is denoted by C

S
. For all the systems

considered, the range of values obtained for C
S

is always the same [1, 2]. This suggests
that C

S
is an absolute indicator of the strength of coupling independent of the system

considered.
All the results presented in references [1, 2] have led to the choice of a threshold of

C
S
"0)07 above which the coupled subsystems can be considered as weakly coupled in

a SEA sense. However, theoretical studies have shown that C
S

is sensitive to the degree of
proximity of resonance frequencies of the uncoupled modes of the subsystems [1]. This
phenomenon could induce a misinterpretation of the indication provided by C

S
. In the case

of weak coupling, if the uncoupled resonance frequencies are not proximate enough, the
value obtained for C

S
is very small (Figure 3). Therefore, the experimenter would wrongly

conclude that the two subsystems considered are strongly coupled. The aim of the following
sections is to propose a way to overcome this apparently restrictive condition for a practical
use of C

S
.

Figure 2. De"nition of a non-dimensional measure of the strength of coupling C
S
.
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Figure 3. Sensitivity of C
S

to proximity between uncoupled resonance frequencies. Case 1: the two rods are
similar, the uncoupled resonance frequencies are the same for both subsystems. Case 2: the length of rod 2 is half
the length of rod 1. The uncoupled resonance frequencies are not the same in the frequency band considered.
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3. THE CASE OF TWO COUPLED OSCILLATORS AND ARBITRARY STRENGTH
OF COUPLING

3.1. DESCRIPTION OF THE SYSTEM

The system studied in this section consists of two oscillators coupled by a spring. The
coupling is assumed to be conservative. The masses and viscous damping of both oscillators
are the same (Figure 4). The only varied parameters are K

2
, the spring sti!ness of oscillators

2, and k, the sti!ness of the coupling spring. This is not too restrictive insofar as the main
purpose of this section is to study C

S
as a function of uncoupled resonance frequencies and

strength of coupling. Modal proximity between the uncoupled resonance frequencies is
directly related to the value of K

2
, whereas &&strength'' of coupling is proportional to k.

In order to derive C
S
, the system is subject to an impulse force and the velocity response

of the indirectly excited oscillator is analyzed. The dynamics of the system in Figure 4 are
expressed by

mxK
1
#K

1
x
1
#k (x

1
!x

2
)#dxR

1
"Id(t),
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2
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2
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where x
1

and x
2

are the displacements of masses m and I is the magnitude of the impulse
force.
Figure 4. Two coupled oscillators with conservative coupling.
In the frequency domain, the Fourier transform of equation (1) may be written
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where XI
1

and XI
2

are the Fourier transforms of displacements x
1
(t) and x

2
(t). Equation (2)

yields
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The uncoupled resonance frequencies are
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where g
1
"d/JK

1
m and g

2
"d/JK

2
m are loss factors, equal to twice and damping

ratios
For both oscillators, masses and spring sti!ness have been arbitrarily chosen, insofar as,

according to reference [5], C
S

is sensitive to the relative separation between the resonance
frequencies but not to their absolute value. The viscous damping coe$cients have been
chosen in order to yield reasonable values for the loss factors. The selected physical
characteristics of the system are presented in Table 1.

Unlike g
2

and ud
2
, the modal bandwidth g

2
u

2
does not depend on K

2
for g

2
u

2
"d/m

with u
2
"JK

2
/m. The resonance frequency ratio, r, may be expressed as a function of K

2
(Figure 5),

r"
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2
. (5)

Preliminary tests were performed in order to choose the range of coupling sti!ness for k. In
case of perfect modal coincidence, for values of k between 10~2 and 105, C

S
varies between

0)35 and 0. It is considered therefore that all the cases of strength of coupling have been
simulated. In addition, in case of very weak coupling, the resonance frequency ratio has
been varied from 0)90 to 1)1 in order to produce values of C

S
varying from close to 0 to 0)35.

This range of resonance frequency ratio enables us to study any strength of coupling with or
without modal interaction.
JSV 20002929



TABLE 1

Physical characteristics of the coupled oscillators

Oscillator 1 Oscillator 2 Coupling

m K
1

d ud
1

g
1

m K
2

d k

0)1 kg 105 N/M 0)5 Ns/m :103 rad/s 5]10~3 0)1 kg Variable 0)5 Ns/m Variable

Figure 5. Example of the frequency separation between the uncoupled resonance frequencies of the oscillators
as a function of K

2
.
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The value of d has been chosen such that g
2
lies between 10~3 and 10~2. The velocities of

masses m are derived in the time domain and squared. Subsequently, C
S

is derived for
various k and K

2
. The results are presented in the next section.

3.2. C
S

AS A FUNCTION OF THE STRENGTH OF COUPLING AND RESONANCE FREQUENCY

RATIOS

On the basis of the theoretical model of two coupled oscillators described in the previous
section, C

S
has been derived for a range of resonance frequency ratios, coupling strength

and damping (Figures 6 and 7). In order to vary the damping, d has been changed. For
Figure 6, d"0)1, whereas in Figure 7, d"0)01. This yields respectively g

1
"10~3 and

10~2. Unlike g
1
, g

2
depends on K

2
and therefore on the resonance frequency ratios, r.

Nevertheless, oscillators 1 and 2 have the same modal bandwidth and g
2

always lies
between 10~3 and 10~2.

For these two coupled oscillators, the modal overlap my be de"ned by

m"

g
1
u

1
ud

2
!ud

1

"

g
1
u

1
ud

1
(1!r)

with g
1
u

1
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2
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2
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Figure 6. C
S
as a function of coupling strength and resonance frequency ratio with g

1
"10~3.==, r"1; } } },

r"0)999, m"1; ) ) } ) ), r"0)997, m"0)34; ) } } ), r"0)995, m"0)20; **, r"0)992, m"0)12; *}*,
r"0)990, m"0)10.

Figure 7. C
S
as a function of coupling strength and resonance frequency ratio with g

1
"10~2.==, r"1; } } },

r"0)999, m"1; ) ) } ) ), r"0)98, m"0)50; ) } } ), r"0)97, m"0)34; **, r"0)96, m"0)25; *}*, r"0)95,
m"0)20.
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When the resonance frequencies are the same, the model overlap becomes in"nite. This only
occurs for the special case of two coupled oscillators.

The results presented in Figures 6 and 7 con"rm that, in case of weak coupling, C
S
can be

highly sensitive to the uncoupled resonance frequencies ratio. However, there is seen to be
a convergence of curves in Figures 6 and 7 as k is increased. The same calculations have
been performed with resonance frequency ratios greater than unity or with g

1
"5]10~3

and a similar convergence of curves is observed [3]. In each case, the convergence occurs for
C

S
between 0)05 and 0)07. This directly relates to the transition zone between weak and

strong coupling coloured in grey in the "gures. Before the convergence, the coupling is weak
and the temporal evolution of the impulse response is sensitive to the values of the
uncoupled resonance frequencies. After the convergence, the coupling is strong, C

S
is small,

the impulse response is dominated by global modes and therefore it is not sensitive to the
values of uncoupled resonance frequencies. In this respect, the choice of 0)07 as a threshold
for C

S
seems relevant.
JSV 20002929
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Whatever the ratio between the uncoupled resonance frequencies, when the coupling is
strong these uncoupled resonance frequencies do not a!ect the dynamic behaviour of the
system. There are no localized modes and, therefore, there cannot be modal interaction
between localized modes. It is remarkable that the value of coupling sti!ness, k, for which
the coupling can be considered as strong does not depend on the uncoupled frequency ratio,
r. So long as uncoupled resonance frequencies are su$ciently proximate to produce a value
of C

S
greater than 0)07 in case of very weak coupling (horizontal regions of the curves), C

S
stays above 0)07 in the whole region of weak coupling de"ned for r"1 (perfect modal
coincidence and C

S
'0)07). This is typically the case when 0)992)r)1 in Figure 6 and

when 0)96)r)1 in Figure 7. This behaviour is very signi"cant and has been con"rmed for
more complex systems such as two coupled plates [3]. Therefore, if a criterion related to
modal interaction ensures that C

S
is greater than 0)07 in the case of very weak coupling,

then this criterion will also ensure that C
S
is greater than 0)07 so long as the coupling is not

strong. This conclusion is very important insofar as it enables the use of the mathematical
model of two oscillators in case of very weak coupling to design a criterion which could be
generalized to the whole region of weak coupling without restriction.

4. THE CASE OF TWO VERY WEAKLY COUPLED MODES

4.1. DESCRIPTION OF THE MATHEMATICAL MODEL

In reference [6], it is demonstrated that in case of very weak coupling, i.e., when
k2/u

1
d
1
u

2
d
2
@1, according to equation (3) displacement XI

2
is approximately inversely

proportional to the product of modal impedances,
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2
"

k
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1
#k#idu)

1

(!mu2#K
2
#k#idu)

. (6)

Then, the temporal evolution of the local kinetic energy of the indirectly excited oscillator
may be analytically derived from equation (6):
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where u
1
"JK

1
/m and u

2
"JK

2
/m. j, H

21
and H

12
do not depend on time and are

de"ned in Appendix A.
It is suggested in reference [5] that this model is also valid to represent the behaviour of

two very weakly coupled modes. Furthermore, in SEA, when coupling is weak, the
interaction between modes of connected substructures is described on a mode-to-mode
basis. The dynamics of each subsystems are represented by a set of oscillators and the
characteristics of the energy #ow are described while considering two coupled oscillators at
a time [6]. Therefore, all numerical results relying upon this mathematical model of two
very weakly coupled oscillators are likely to be valid for two very weakly coupled modes.
Besides, although this model is valid only in case of very weak coupling, it has been
suggested in the previous section that, as far as modal interaction is concerned, it is likely to
yield conservative criteria to ensure modal interaction in any case of weak coupling.

According to equation (7), the temporal moving average of E
2
(t) yields C

S
as a function of

four variables,

C
S
(u

1
, u

2
, g

1
, g

2
).
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C
S
as a function of four variables is carefully studied in the following sections. This consists

in looking for the quadruplets (u
1
, u

2
, g

1
, g

2
) for which C

S
"0)07. An iterative method is

used. All the variables are "xed except one. To establish the value of the remaining variable
for which C

S
"0)07, a bisection method [7] is used. It is particularly appropriate insofar as,

beforehand, it has been checked that C
S
as a function of one variable is globally monotonic.

With a dichotomic procedure, the criterion of convergence is directly related to the
precision desired to solve the equation. This is illustrated in the next section. Following all
these numerical studies, a criterion to predict modal interaction between two modes will be
proposed.

4.2. C
S
(u

1
, u

2
)"0)07

In this section, g
1

and g
2

are "xed and the equation C
S
(u

1
, u

2
)"0)07 is solved. This

equation is solved with a convergence criterion of 3]10~3. This means that if (u
1
, u

2
) is

a solution, then 0)067(C
S
(0)073. This value for the precision has been chosen in order to

accelerate the convergence of the algorithm used to solve the equation without substantially
altering the results. The equation C

S
(u

1
, u

2
)"0)07 de"nes a curve. However, rather than

plotting this curve, the curve de"ned by C
S
(u

1
, u

2
/u

1
)"0)07 is presented in Figure 8. This

result suggests that for given damping ratios, a sensible parameter related to modal
interaction is not u

1
}u

2
but rather u

2
/u

1
. The greater the u

1
, the less close u

2
need to be

to u
1

to produce modal interaction. For a given damping ratio, the two modes need to
be closer at lower frequency to ensure modal interaction. The two straight lines related
to given damping ratios clearly de"ne two zones. If the frequency ratio is between the
two straight lines, then the modes are proximate enough to yield C

S
'0)07 in case of

weak coupling. There is modal interaction. But, if the frequency ratio is outside the two
straight lines, then the two modes are too far apart, and C

S
will remain less than 0)07 even if

the modes are weakly coupled. In this latter case, C
S

is of no use for detecting weak
coupling.
Figure 8. Frequency ratio for modal interaction as a function of frequency: ==, g
1
"10~2, g

2
"1)2]10~2,

} }, g
1
"4]10~2, g

2
"1)2]10~1.

JSV 20002929



460 P. P. JAMES AND F. J. FAHY
Furthermore, although two zones have been very clearly de"ned, it is very important to
know if the transition between them is sharp or not. This is directly related to the sensitivity
of C

S
to small variations of frequency ratio, and therefore to modal density. Three di!erent

cases have been considered. In each case, C
S

as a function of r"u
2
/u

1
has been derived

with u
1
"2n]1000 rad/s (Figure 9). Around C

S
"0)07, C

S
as a function of frequency

ratio (r) has been approximated by a polynomial curve with the Poly"t function of
MATLAB. The derivatives of the polynomial curves provide an evaluation of the sensitivity
of C

S
to small changes in r when C

S
value is around 0)07. Indeed, the derivatives may be

expressed as LC
S
/Lr:DC

S
/Dr, where Dr denotes a small change in the frequency ratio

r and DC
S

is the resulting change in C
S
. Table 2 yields the estimated values for the

derivatives in three cases.
TABLE 2

Sensitivity of C
S

to frequency ratio

g
1
"2]10~3 g

1
"10~2 g

1
"4]10~2

g
2
"4]10~3 g

2
"1)2]10~2 g

2
"1)2]10~1

LC
S

L r
for r(1 3.44 0.70 0.43

LC
S

L r
for r'1 !3)44 !0)52 !0)18

Figure 9. Sensitivity of C
S

to frequency ratio.
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According to Table 2, when C
S
is around 0)07, a change, *r, equal to or less than 10~3 in

the frequency ratio would yield a change DC
S
less than or equal to 3)44]Dr for the range of

damping considered. However, for g
1
"10~2 and g

2
"1)2]10~2, DC

S
would only

decrease to 0)70]Dr. It is worth noting that the robustness of C
S

to changes in the
frequency ratio increases with damping. Typically, if for r"r

0
, C

S
"0)07, then for

r"r
0
$0)001,

0)07!3)44]10~3(C
S
(0)07#3)44]10~3

or

0)066(C
S
(0)074.

This means that if the frequency ratio yielding C
S
"0)07 is known with a precision equal

to 10~3, then the previous equality is true with an error less than 0)004. It is therefore
unnecessary to require a greater precision for r. Thus, in Figure 8, for practical damping
values, the transition zone de"ned by the straight lines is quite robust against small changes
in frequency ratio. As we will see in section 5, this implies that C

S
is also robust against small

changes in modal density. The following derivations are based upon this conclusion.
Once the damping is "xed, the range of u

2
/u

1
in which C

S
is equal to 0)07 can be derived.

This allows us to evaluate the reliability of the indication given by C
S
. If the actual

frequency ratio is between the two transition values, then a reliable assessment of strength of
coupling can be performed with C

S
; otherwise C

S
is of no use insofar as it can be less than

0)07 even if the two modes are weakly coupled. It can also be noticed in Figure 8 that the
transition values for the frequency ratios are highly dependent on damping ratios.
Therefore, in the next section, the in#uence of damping on modal interaction is studied.

4.3. C
S
(g

2
, u

2
/u

1
)"0)07

For a given pair (u
1
, g

1
) and a value g

2
, the values of u

2
/u

1
for which C

S
"0)07$0)03

have been derived (Figure 10).
Figure 10. In#uence of natural frequency ratio and loss factors on modal interaction: ==, g
1
"5)1]10~3;

* } *, g
1
"1)1]10~3.
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Modal interaction seems to be related to modal bandwidth when both values of damping
have the same order of magnitude. In this case, the wider is one of the modal bandwidths,
the wider is the region of modal interaction between the models. However, the combined
in#uence of loss factors has not yet been studied. Section 4.2. has shown that C

S
is not

a function of (u
1
, u

2
, g

1
, g

2
) but rather a function of (u

2
/u

1
, g

1
, g

2
). As a function of three

variables, the solution of the equation C
S
(g

1
, g

2
, u

2
/u

1
)"0)07 can be represented by

a surface. This has been done in the next section.

4.4. C
S
(u

2
/u

1
, g

1
, g

2
)"0)07

The equation C
S
(u

2
/u

1
, g

1
, g

2
)"0)07 has been solved for (g

1
, g

2
)3[10~3; 10~1]]

[10~3; 10~1]. For 19]19 pairs (g
1
, g

2
), the two values of u

2
/u

1
for which C

S
"0)07$0)01

have been derived. A precision of 0)1 has been chosen to reduce the computing time. Despite
this low precision, the convergence has not always been established. Sometimes, the
position of the maximum of moving average of the energy impulse response seems to be
extremely sensitive to small changes in frequency ratio. This happens when the moving
average has two peaks whose magnitudes are very close. A very small change in the natural
frequency ratio makes the maximum &&jump'' from one peak to the other making C

S
&&jump''

from one value to the other. If 0)07$0)01 is between these two values, the algorithm cannot
converge. Rather than ignoring the pairs of loss factors for which this phenomenon occurs,
it has been arbitrarily decided to stop the algorithm when the change in frequency ratio
from one iteration to the other is less than 0)001 and to retain as a result the value of the
frequency ratio attained. This is subsequently justi"ed. Figure 11 and 12 illustrate the
results. When both modal bandwidths are large, modal interaction seems easily ensured.

All the numerical results for the 19]19 pairs (g
1
, g

2
) are presented in Appendix B. The

pairs for which the algorithm has not converged are indicated by a dark-grey background.
It is worth noting that the questioned values are totally coherent with the rest of the table
therefore justifying the approximation. Moreover, insofar as, for a given system, the values
for the frequencies are supposed to be "xed, this phenomenon of instability does not really
alter the deterministic measure of C

S
. However, from a statistical point of view, it deserves

more attention because it can greatly modify the con"dence interval related to C
S

and
modal interaction.

As a result of these numerical studies, the phenomenon of modal interaction is better
understood, or at least quanti"ed. For given loss factors, the higher are the frequencies, the
less close they need to be to ensure modal interaction (Figures 11 and 12). For reasonable
damping, the greater the loss factors, the less proximate natural frequencies need to be. It
thus appears that, in case of two coupled modes, modal interaction depends on modal
bandwidth. These results are the basis for the proposal of a modal interaction indicator for
multi-modal systems in the next section.

5. MODAL INTERACTION: THE CASE OF MULTI-MODAL COUPLING

5.1. M
p
: A CRITERION FOR MODAL INTERACTION

In the previous section, a conservative condition has been derived to ensure modal
interaction. If this condition is ful"lled and C

S
is less than 0)07, this means that there is

strong coupling. This condition has been derived for two coupled modes and involves both
natural frequencies and damping ratios. In practice, within a frequency band, every
particular resonance frequency and damping ratio related to the uncoupled subsystems are
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Figure 11. Modal interaction surface as a function of loss factors and natural frequency ratio. Case of natural
frequency ratio greater than 1.

Figure 12. Modal interaction surface as a function of loss factors and natural frequency ratio. Case of natural
frequency ratio less than 1.
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impossible to measure. This is especially true when the modal overlap is high. However, in
most practical cases, modal density of both subsystems, n

1
and n

2
, and their internal loss

factors, g
1

and g
2
, can be estimated reasonably reliably. This section aims at adapting the

previous condition to practical cases for which modal densities and internal loss factors are
the only available data. In section 4.2, for given loss factors (g

1
, g

2
), it has been shown that

existence of modal interaction does not depend on distance between two uncoupled natural
frequencies u

1
and u

2
but rather on their ratio u

2
/u

1
. Let us denote by x

min
"u

2
/u

1
D
min

and x
max

"u
2
/u

1
D
max

the two natural frequency ratios between which modal interaction
exists (Figure 8). The indication provided by C

S
is related to the strength of coupling as long
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as there exist two natural frequencies u
1

and u
2

such that

x
min

(

u
2

u
1

(x
max

. (8)

For practical SEA analysis, coupling loss factors and internal loss factors are always derived
over a frequency band. Therefore, it is highly desirable to extend the condition (8), valid only
for two coupled modes, to a whole frequency band. So, it is assumed that u

1
and u

2
are

within the frequency band [u
min

; u
max

].
Since

D u
1
!u

2
D(u

min
min ( D 1!x

min
D, D 1!x

max
D )N K1!

u
2

u
1
K(min ( D1!x

min
D, D1!x

max
D)

K1!
u

2
u

1
K(min ( D1!x

min
D, D1!x

max
D )Nx

min
(

u
2

u
1

(x
max

, (9)

the new condition for modal interaction within a frequency band might than be written as

D u
1
!u

2
D(u

min
min ( D 1!x

min
D, D 1!x

max
D) . (10)

Condition (10) is conservative according to equation (9), condition (10) implies condition (8).
x
min

and x
max

depend on the internal loss factors and u
min

is related to the frequency band
considered. Equation (10) is valid as long as x

min
and x

max
remain approximately constant

over the frequency band. This means that damping must be also almost uniform over the
frequency band considered.

Condition (10) relates modal interaction to the distance between uncoupled modes;
therefore it is important to assess the separations between each set of uncoupled modes. If
very weak coupling is assumed for the whole frequency band considered, according to
reference [3], modal interaction occurs when only two uncoupled modes are su$ciently
proximate.s Therefore, the parameter directly related to modal interaction is the smallest of
all the separations between the uncoupled modes. Let us denote by dist

min
this parameter. In

case of modal coincidence, dist
min

"0. But, usually, it is greater than zero. There is modal
interaction if dist

min
(u

min
min( D 1!x

min
D, D1!x

max
D). So, a modal interaction indicator

can be de"ned by

M
p
"

u
min

min ( D1!x
min

D, D 1!x
max

D)
dist

min

, (11)

where x
min

and x
max

are derived for given internal loss factors.
If M

p
is greater than unity, there is model interaction and C

S
is a good indicator of

strength of coupling; but if M
p

is less than unity and C
S

is less than 0)07, then there is no
de"nite conclusion about the strength of coupling. The major di$culty in deriving M

p
is the

assessment of dist
min

. Unless the two subsystems are very well de"ned, a deterministic
approach does not seem appropriate. Besides, SEA usually deals with practical structures
subject to uncertainties. Therefore, a statistical assessment of dist

min
appears to be the most

pertinent from a practical point of view.
sWe write &&two uncoupled modes'' but in fact, this means one uncoupled mode from the "rst subsystem and the
other from the second subsystem.
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5.2. A STATISTICAL APPROACH TO ASSESSING dist
min

In order to assess the statistics of dist
min

, the statistical distributions of the uncoupled
natural frequencies of both subsystems are required. In the absence of any de"nite
conclusion, the same statistical distribution as that used by Lyon [6] to derive the main
parameters of SEA has been chosen. The mode distribution within the frequency band is
assumed to be uniform for both very weakly coupled subsystems. The uncoupled natural
frequencies are assumed to be independent stochastic variables. On average, for a system
with two sets of uncoupled modes drawn with a uniform probability, dist

min
is greater than

zero. Insofar as the probability distribution of the uncoupled modes is known, it is possible
to derive the probability distribution of dist

min
. The chosen method is a Monte Carlo

simulation. Two vectors of size respectively N
1

and N
2

represent the two sets of uncoupled
natural frequencies. Their components are drawn with a uniform probability between 0 and
1. N

1
is the number of modes within the chosen frequency band for the "rst subsystem

whereas N
2
is related to the other subsystem. N

1
and N

2
are the only two parameters. There

are directly related to modal density. Once the two vectors have been drawn, dist
min

, the
smallest frequency separation between these two sets of uncoupled natural frequencies is
derived. If the frequency band is [u

min
; u

max
] instead of [0; 1], we just multiply dist

min
by

u
max

!u
min

. The procedure is repeated 20 000 times to yield an estimate of the average and
standard deviation of dist

min
which is not sensitive to the number of draws. Besides, with

20 000 values for dist
min

, it becomes possible to assess quite precisely its cumulative
probability distribution. Let us denote by k the average of dist

min
and by p its standard

deviation. k and p have been derived for N
1

and N
2

varying between 1 and 20. This yields
20]20 values for the average and standard deviation of dist

min
. It is suggested in reference

[3], that both average, k, and standard deviation, p, can be approximated by the same
analytical formula,

k (N
1
, N

2
)"

1

2

1

N
1
N

2

,

p (N
1
, N

2
)"

1

2

1

N
1
N

2

. (12)

Furthermore, the probability distribution of dist
min

appears to be related to a particular
Gamma distribution (Figure 13) de"ned by

f (x)"G
1

k
e~xk

0

x'0, k'0,

otherwise,

and its cumulative probability distribution is de"ned by F (x)":x
u/0

(1/k) e!u/k du.
Although this has been checked for most of the simulated cases, it would be worth

demonstrating it analytically for arbitrary values of N
1

and N
2
.

On the basis of the analytical approximations, the probability distribution for dist
min

can
be predicted whatever the number of uncoupled modes. Let us denote by DX

90
, the limit

below which are 90% of dist
min

values. This limit can be found on the basis of the cumulative
distribution function of the associated gamma distribution (Figure 13). It is de"ned by

F (DX
90

)"0)9,

hence

DX
90
"!k ln (1!0)9). (13)
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Figure 13. Cumulative probability distribution of dist
.*/

in case of a uniform probability distribution of the
uncoupled natural frequencies for N

1
"3 and N

2
"5. * Gamma distribution; **Numerical simulation
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DX
90

depends not only on N
1

and N
2

but also on the frequency bandwidth. If DX
90

is less
than the required separation between two natural frequencies to have modal interaction,
this means that for 90% of the coupled sets of modes drawn from a uniform population
there exist at least two modes proximate enough to ensure modal interaction. For the
particular probability distribution used for the uncoupled natural frequencies, the modal
interaction indicator might be written as

M
p
"

u
min

min ( D1!x
min

D, D1!x
max

D)
DX

90

, (14)

where x
min

and x
max

are derived for given internal loss factors.
M

p
has been de"ned for a given frequency band and internal loss factors are assumed to

be constant over the frequency band. In the following section, some application of M
p

to
various systems are presented. The results are compared with previous studies.

5.3. APPLICATION OF M
p

TO VARIOUS SYSTEMS

In this section, M
p
is applied to the "ve systems studied in references [1, 2]. Rather than

using the Gamma distribution values for DX
90

, some numerical simulations have been
performed to derive its exact value. The only di!erence observed with the approximated
values is for N1"N2"1. For all the other cases, the relative error is less than 2%. In
practice, the experimenter assesses the number of modes N

1
and N

2
in the frequency band.

Then, it is very easy to derive DX
90

using equations (12) and (13). Furthermore, if the
internal loss factors have been measured, then the appropriate values for x

min
and x

max
may be found in Appendix B. Therefore, it becomes possible to derive M

p
. The only

data required beforehand are the modal densities and internal loss factors for each
subsystems.
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5.3.1. ¹wo coupled rods: numerical simulations

For a uniform, isotropic, one-dimensional system, the modal density is n"¸/n c
g
where

¸ is the length of the system and c
g
the group velocity. For a rod, c

g
"JE/o with E, the

Young's modulus and o the density and the modal density is actually uniform. In reference
[1], the e!ect of proximate modes on C

S
has been carefully studied for two clamped-free

rods coupled by a spring and subject to quasi-longitudinal waves. Therefore, it has been
decided to consider the same rods. In reference [1], the two coupled rods have the same
internal loss factors. Whereas n (u) does not depend on the circular frequency u, damping is
inversely proportional to u. It varies so much within the frequency band considered in
reference [1] that it has been decided to examine di!erent parts of the frequency band
containing at least one natural frequency. For each frequency band the minimum and
maximum values of internal loss factors have been derived. The values used to derive M

p
are

presented in Table 3.
For each frequency band and each values of internal loss factors, x

min
and x

max
have been

obtained from Appendix B and M
p

has been assessed. The results are listed in Table 4.
A synthesis of all the possible values for M

p
in each frequency band is presented in the last

column of Table 4. Of course, in practice, there should be only one value of internal loss
factor per frequency band and a single value for M

p
.

Whichever the frequency band considered, M
p

is less than unity. Thus, according to the
new criterion, Table 4 indicates that, on a statistical basis, there is modal interaction.
Therefore, the ability of C

S
to distinguish weakly from strongly coupled subsystems in

a SEA sense is highly sensitive to separation between uncoupled resonance frequencies. The
conclusion raised by the new criterion totally agrees with the results presented in reference
[1]. When the length of the coupled rods is varied, the value of C

S
may be less than 0)07,

therefore misleading the experimenter who would believe that the rods are strongly coupled.
However, two coupled rods is the most simple system and the new criterion has been tested
on more complex structures.
TABLE 4

Results obtained for M
p

in the case of two coupled rods

D 1!x
min

D D 1!x
max

D DX
90

umin ( D1!x
min

D, M
pD1!x

max
D)

min max min max min max

[500; 1000] 0)06 0)12 0)06 0)12 342)5 30 120 (0)35
[1000; 3000] 0)02 0)06 0)02 0)06 570.0 20 180 (0)31
[3000; 6625] 0)01 0)02 0)01 0)02 478)4 30 132)5 (0)28

TABLE 3

Input data used to derive M
p

in the case of two coupled rods

Frequency band (rad/s) [500; 1000] [1000; 3000] [3000; 6625]

Internal loss factors g
min

"4)8]10~3 g
min

"1)6]10~3 g
min

"8]10~4
g
max

"9)7]10~3 g
max

"4)8]10~3 g
max

"1)6]10~3
Number of modes N

1
"N

2
"1 N

1
"N

2
"2 N

1
"N

2
"3
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5.3.2. ¹wo coupled beams: numerical simulations

The two beams considered are the same as those studied in reference [1]. The systems
consist of ideal Euler}Bernoulli cantilever beams in #exure coupled by a spring. The beams
are uniform, homogenous one-dimensional systems, so their modal density might be
expressed as n"¸/nc

g
where ¸ is the length of the system and c

g
is the group velocity.

Unlike the compressive waves, the bending waves are dispersive, so the group speed
depends on frequency; it is twice the phase speed. The mode distribution is not uniform. For
the two beams considered in reference [1], the internal loss factors are the same. The main
values necessary to derive the criterion are presented in Table 5.

For each frequency band, x
min

and x
max

have been obtained from Appendix B and M
p
has

been assessed. The results are listed in Table 6. A synthesis of all the possible values for M
p
is

presented in the last column of Table 6 for each frequency band.
Table 6 shows that, on a statistical basis, modal interaction is not ensured for the two

coupled beams. Once more, this conclusion agrees with the results presented in reference
[1]. C

S
might be less than 0)07 even if the subsystems are weakly coupled.

5.3.3. ¹wo rectangular coupled plates: numerical simulations

In this section, the system consists of two rectangular mild steel plates of equal width. The
two plates are homogeneous, isotropic and very thin as compared to the wavelength
involved. Each plate has two opposite sides simply supported. The plates are coupled
together along one edge with a uniform line coupling element which allows translational as
well as rotational motions of the coupled edges. The coupling element is conservative and
the remaining edges of the two plates (opposite to the coupling line) are clamped. The
system is subjected to #exure. The physical characteristics of both plates are similar to those
presented in reference [1]. The frequency band considered in reference [1] is [50; 134] rad/s.
The actual number of modes within the frequency bands is N

1
"N

2
"8 and the damping

varies from 3)8]10~3 to 10~2. The results obtained for M
p

are presented in Table 7.
TABLE 6

Results obtained for M
p

in the case of two coupled beams

D 1!x
min

D D 1!x
max

D DX
90

umin ( D1!x
min

D, M
pD1!x

max
D)

min max min max min max

[37; 700] 0)10 0)25 0)10 0)25 188)9 3)7 175 (0)92
[700; 2500] 0)03 0)10 0)03 0)10 513.0 21 250 (0)49
[2500; 3500] 0)03 0)03 0)03 0)03 685)0 75 105 (0)16

TABLE 5

Input data used to derive M
p

in the case of two coupled beams

Frequency band (rad/s) [37; 700] [700; 2500] [2500; 3500]

Internal loss factors g
min

"7)4]10~3 g
min

"2]10~3 g
min

"1)5]10~3
g
max

"9]10~2 g
max

"7)4]10~3 g
max

"2]10~3
Number of modes N

1
"N

2
"1 N

1
"N

2
"2 N

1
"N

2
"1
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TABLE 7

Results obtained for M
p

in the case of two coupled plates

D 1!x
min

D D 1!x
max

D DX
90

u min ( D1!x
min

D, M
pD 1!x

max
D )

min max min max min max

[50; 134] 0)04 0)10 0)04 0)10 1)51 2 13)40 '1)32

Figure 14. K
t
"10 N/m2 and K

t
"10 N/rad.
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According to Table 7, M
p

is greater than unity. This means that, on a statistical basis,
there is modal interaction: C

S
should not be sensitive to changes in natural frequencies

location. However, the results presented in reference [1] contradict this conclusion. In
Figure 14, C

S
appears to be highly sensitive to the length ratio of the two coupled plates. ¸

1
and ¸

2
are respectively the length of the plates measured along the simply supported edges.

For ¸
2
/¸

1
"0)9, C

S
"0)01. To con"rm this result, C

S
has been derived for 25 randomly

chosen points * "ve excitation points chosen on one plate and "ve points, where the
dynamic response is measured, chosen on the other plate. Therefore, 25 values of C

S
have

been derived. The 90% con"dence interval is [0)0791; 0)1883]. This clearly shows that there
is modal interaction.

It becomes obvious that the spatial distribution of modes is very important. In this
particular case, M

p
is quite small. This means that in the neighbourhood of each uncoupled

mode of the "rst plate there is only one or two uncoupled modes of the second plate.
Moreover, there is a time delay only if the mode shapes of these close uncoupled modes
match at the boundary. There is only a small number of uncoupled modes which ful"l the
two conditions to yield a time delay. This is why, sometimes it might be di$cult to excite
two close uncoupled modes whose mode shapes are compatible at the coupling and this
generates a statistical dispersion over the values of C

S
(Figure 15).
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Figure 15. K
t
"10 N/m2 and K

t
"10 N/rad. ¸

rat
"0)9. Examples of squared velocity impulse response mea-

sured at two locations for two di!erent excitation points (the co-ordinates of the points are related to the reference
system used [1]).
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C
S

appears to be extremely sensitive to location of excitation and response. This
dispersion of measures arises from low modal density combined with a 2D system. To
measure a signi"cant C

S
, there have to be resonance frequencies and mode shapes matching.

M
p

does not take into account this latter requirement. Depending on the location of
excitation and response, the two proximate modes may not be excited or observed.
Nevertheless, it should be remembered that this analysis has been based on geometrically
regular systems in which selectivity is extreme. Finite element studies by Mace [8] of the
e!ect of irregularity on energy distribution between subsystems show that signi"cant
cross-modal interaction occurs at higher levels of damping for rectangular regular systems.

From a practical point of view, whenever it is possible, it is worth performing several
measures of C

S
and deriving con"dence limits. The use of con"dence intervals derived from

a sample of values for C
S

helps the experimenter to be con"dent in the results.

5.3.4. ¹wo coupled plates: experiments

The system consists of two coupled 3 mm thick steel plates of irregular shape and
identical material properties (Figure 16). The two plates are coupled by means of 3 mm
thick steel straps of 40 and 50 mm free length. The two plates considered in this section are
the same as those presented in reference [2]. Their dimensions and the experimental set-up
may be found in references [2]. The measurements of damping and modal densities for both
plates may be found in reference [9]. Some internal loss factors values have been
extrapolated. The experimental data used to derive M

p
are listed in Table 8.

All the frequency bandwidths equal to 200 Hz. Thus, DX
90

is the same whatever the
frequency band. In all cases, N

1
"n

1
]200:13 and N

2
"n

2
]200:18. (x

min
, x

max
) has

been obtained from Appendix B. The values for M
p

are listed in Table 9.
According to Table 9, whatever are frequency band, there is always modal interaction.

The conclusion is not contradicted by the experimental results presented in reference [2] for
which con"dence intervals were derived.

5.3.5. ¹wo rooms coupled by an aperture: experiments

The two rooms considered are those presented in reference [2] (Figure 17). For these
particular coupled systems, the damping could easily be varied by adding or removing
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Figure 16. Two coupled plates.

TABLE 8

Internal loss factors and modal densities measured on two plates coupled by two straps [2]

Centre Plate 1 Plate 2 Plate 1 Plate 2
frequency (Hz) n

1
( f ) n

2
( f ) g

1
g
2

200 0)0656 0)0926 2)74]10~3 7]10~4
600 0)0656 0)0926 1)92]10~3 10~3

1900 0)0656 0)0926 1)51]10~3 8]10~4
4900 0)0656 0)0926 7]10~3 3]10~3
6900 0)0656 0)0926 8]10~3 4]10~3

TABLE 9

Results obtained for M
p

in the case of two coupled plates studied experimentally

D 1!x
min

D D 1!x
max

D DX
90

f
min

min ( D 1!x
min

D, M
pD1!x

max
D)

[100, 300] 0)02 0)02 0)98 2 2)04
[500, 700] 0)02 0)02 0)98 10 10)2
[1800, 2000] 0)01 0)01 0)98 18 18)4
[4800, 5000] 0)04 0)04 0)98 192 196
[6800, 7000] 0)04 0)04 0)98 272 278
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absorbing panels. Three con"gurations of coupled rooms have been studied * no
absorbing panel, "ve absorbing panels, 10 absorbing panels put in room 2. The modal
density is highly dependent on frequency. In all cases, the smallest modal density within the
frequency band has been used. Indeed, if M

p
is greater than unity, then it would be also

greater than unity for greater modal density. For each frequency band, modal densities and
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Figure 17. Two rooms coupled by an aperture; dimensions in m.

TABLE 10

Results obtained for M
p

in the case of two coupled rooms studied experimentally

No absorbing panel

D 1!x
min

D D 1!x
max

D DX
90

f
min

min ( D 1!x
min

D, M
pD1!x

max
D)

[100, 500] 0)06 0)06 1)35 6 '4)4
[600, 1000] 0)03 0)03 1)032]10~3 18 '17]103
[1600, 2000] 0)01 0)01 2)038]10~3 16 '78]104
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internal loss factors might be found in reference [2]. The value of M
p
has been assessed for

the three con"gurations of coupled rooms studied. The results for the con"guration of
coupled rooms with no absorbing panel is presented in Table 10.

It clearly appears that in all cases, there is modal interaction. The same conclusions have
been reached for the two other con"gurations of coupled rooms [3]. This conclusion is very
di$cult to compare with any experimental results insofar as additional damping only
&&reinforces''modal interaction. However, the modal densities of both rooms are so high that
it is not surprising that M

p
indicates modal interaction.

6. CONCLUSION

The main drawback of C
S
underlined in reference [1] is its sensitivity to modal proximity.

C
S
is only a reliable indicator when the modes localized within each subsystem interact. In

this paper, an indictor of modal interaction M
p

is proposed. It requires the assessment of
modal densities and internal loss factors of the subsystems, a very simple numerical
simulation and the use of Appendix B. If M

p
is greater than unity then the indication

provided by C
S
is reliable and C

S
is a good indicator of strength of coupling in a SEA sense.

But, if M
p
is less than unity and C

S
is less than 0)07, then there is no possibility to distinguish
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between strongly and weakly coupled subsystems. In all cases, when C
S
is greater than 0)07,

the coupling is weak. M
p

and C
S

appear to be complementary. M
p

has been tested on the
various experimental systems previously used to study C

S
. The results are encouraging, but

the lack of data and speci"cally designed tests precludes any de"nite conclusion about the
validity of M

p
. However, the indication provided by M

p
could be of real importance. As

long as C
S
is greater than 0)07, the band-pass-"ltered impulse response of the whole system

is dominated by local modes. Therefore, from a SEA point of view, the structure can be
divided into SEA subsystems. According to Langley [3], the SEA postulate is valid for this
deterministic system. But, if M

p
is less than unity, this means that a small change in the

uncoupled natural frequencies location might alter in a spectacular way the
band-pass-"ltered response of the system. C

S
could become less than 0)07 and it has

been shown in reference [1] that, in this case, the magnitude of the response decreases
by a large amount. Therefore, what is valid for a single system may not be valid for
an ensemble of similar systems. M

p
might be a good indicator of the equivalence

between frequency-averaged data measured on a single structure and ensemble-average
data.

However, the sensitivity analysis performed on C
S
has revealed its limits for systems with

very small dampling. Although the existence of the time delay to the peak of
band-pass-"ltered kinetic energy of the indirectly excited subsystem is not questioned, it
would be worthwhile to test other procedure to be able to derive C

S
for these extreme cases.

For example, the uniform average used to derive the moving average could be replaced by
an exponential average or a more appropriate averaging procedure. Another promising
approach would be the use of the non-dimensional rise time proposed by Finnveden in
reference [10]. In all cases, the same logic could be applied to design a modal interaction
indicator.

Besides further investigations could be devoted to study the in#uence of the mode shapes
matching on modal interaction
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APPENDIX A

According to reference [4], j, H
21

and H
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are de"ned by
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APPENDIX B

The numerical results for the 19]19 pairs (g
1
, g

2
) are presented in Tables 11 and 12. The

two bold lines and columns in each table are related to internal loss factors. The lines
correspond to internal loss factor 1 whereas the columns yield values for internal loss factor
2. For a given doublets of loss factors, the value of the natural frequency ratio is found at the
cross section between line and column. It is worth noting that the table is not exactly
symmetric insofar as u

1
does not change. Table 11 displays x

min
and Table 12 gives x

max
.
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TABLE 11

Loss factor 1
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TABLE 12

Loss factor 1
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